Upper bounds on the linear chromatic number of a graph

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper bounds for the chromatic number of a graph

For a connected graph G of order n, the clique number ω(G), the chromatic number χ(G) and the independence number α(G) satisfy ω(G) ≤ χ(G) ≤ n − α(G) + 1. We will show that the arithmetic mean of the previous lower and upper bound provides a new upper bound for the chromatic number of a graph.

متن کامل

Bounds on the restrained Roman domination number of a graph

A {em Roman dominating function} on a graph $G$ is a function$f:V(G)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}A {em restrained Roman dominating}function} $f$ is a {color{blue} Roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} The wei...

متن کامل

Two Upper Bounds on the Chromatic Number

Processor cache memory management is a challenging issue as it deeply impact performances and power consumption of electronic devices. It has been shown that allocating data structures to memory for a given application (as MPEG encoding, filtering or any other signal processing application) can be modeled as a minimum k-weighted graph coloring problem, on the so-called conflict graph. The graph...

متن کامل

Upper Bounds of Dynamic Chromatic Number

A proper vertex k-coloring of a graph G is dynamic if for every vertex v with degree at least 2, the neighbors of v receive at least two different colors. The smallest integer k such that G has a dynamic k-coloring is the dynamic chromatic number χd(G). We prove in this paper the following best possible upper bounds as an analogue to Brook’s Theorem, together with the determination of chromatic...

متن کامل

Upper bounds on the k-forcing number of a graph

Given a simple undirected graph G and a positive integer k, the k-forcing number of G, denoted Fk(G), is the minimum number of vertices that need to be initially colored so that all vertices eventually become colored during the discrete dynamical process described by the following rule. Starting from an initial set of colored vertices and stopping when all vertices are colored: if a colored ver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2011

ISSN: 0012-365X

DOI: 10.1016/j.disc.2010.10.023